Music file specification:

The music file is a simple text file. Each line in this music file can contain at most one command. Commands in this can be either a comment, tempo, or tne. This file specifies keywords in red italics, required variables in <>, and optional variables in []. Tokens are separated by whitespace, tabs, or semicolons.

comment text

Comments are denoted by a ‘#’ symbol at the beginning of the line. If the ‘#’ symbol isn’t at the beginning of the line, it won’t be considered as a comment.

tempo <speed>

The tempo sets the speed of the music. <speed> is an integer value that can range from 0-9, with 0 being the slowest and 9 being the fastest tempo.

tne <time> [V0 N0 OCT0] [V1 N1 OCT1] [V2 N2 OCT2] [V3 N3 OCT3]

The ‘tne’ or time until next event indicates how long a sound is played. There can be zero to four notes specified for any given tne. A tne with no notes specified will result in a pause in music.

Vx indicates the voice of the sound being played. Currently, we can play three different voices, ‘p’ which indicates piano, ‘v’ which indicates violin, ‘t’ which indicates trumpet, and ‘n’ which indicates no voice (this can also be used to generate pauses in the music).

Nx is the note that is going to be played. Notes can be either a, b, c, d, e, f, or g. Sharps and flats can also be specified using ‘#’ or ‘f’ as suffixes to the note. For example, the note G sharp is specified by g# and the note F flat is specified by ff.

OCTx is the octave of the note relative to A. The octave value is an integer value. It can be either positive (higher octaves) or negative (lower octaves).

Here is a sample music file:

Sample music file

set the tempo

tempo 3

set the TNE and specify the notes and voices

tne 4 p c 0; v e 0; t g 0;

tne 1

tne 4 v e 1;

tne 4 p g –1;

PC serial application:
The serial.exe application for Windows is a simple program that accepts the music text file as input and sends the music data to the 8051 in 8 bit packets. The program parses each line of the music file, gets the tokens (grouped characters separated by whitespace, tabs, or semicolons), and creates a linked list of data to send. After parsing the entire music file, it goes through each item in the linked list, creates the packet to send, sends the packet, waits for an acknowledgement from the 8051, and continues until all of the data and items in the linked list are sent. Then it cleans up and exits.

In order to access the serial port, we use the ‘CreateFile’ function which returns us a file handle to the serial port. After getting the file handle we have to configure the serial port so that we are compatible with the 8051 serial port settings. Then the application opens the music file and creates the linked list of data to send to the 8051. Finally, we send using the byte for byte protocol.

Here is the packet structure for sending to the 8051:

Bit number

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |

Tempo packet

| 0 |

 TEMPO |

TNE packets

| 1 |
 TNE
 |

|ID1 | NOTE1 |

| NOTE1 | ID2 | NOTE2 |

| NOTE2 | ID3 | NOTE3 |

| NOTE3 | ID4 |

| NOTE4 |

Tempo packets are 8 bits or one byte long. The first bit is a 0 and the next seven bits represent the tempo value. For our specification we’re only using numbers between 0-9 so the tempo is only 5 bits at most, but this allows for future expansion and also allows us to send exactly one byte.

TNE packets are 48 bits or 6 bytes long. The TNE is specified by a 1 in the first bit, followed by 7 bits for the length of the note(s). Each voice is specified by two bits (since we have four voices, piano, violin, trumpet, and no voice). Each note is one byte in length. The value of the note is based upon the MIDI representation, i.e. middle C is 60. Since voice ids are only two bits, we have no room for future growth. One possible change to this for future projects would be to add more room for voice ids which would allow more voices. Because notes are 8 bits and ids are 2 bits, we have to break up the notes to fit into one byte packets. We do this by sending the leftover bytes in the next packet and continuing this until all of the data has been sent.

